Integrative Parasite Management: Know Your Parasites Know Your Animals

Katherine Petersson, PhD University of Rhode Island Kingston, RI kpetersson@uri.edu

TODAY' S PROGRAM

- The problem
- The parasites; where we are and why
- Biology of important GI Parasites
- Parasite control in sustainable systems

Vermont Historical Society

Worms are not a new problem!

In the 1920's drenches included carbon tetrachloride and copper sulfate/nicotine

Parasites in Sheep and Goats

- Stomach and intestinal worms the major health problem faced by producers in eastern U.S.
- Focus of this presentation

- Coccidia
 - Protozoan (single cell) parasites
 - Infect all small ruminants but host specific
 - Sheep coccidia don't infect other animals and visa versa
 - Oocysts (eggs) shed in manure
 - Cause diarrhea in young animals especially with stress, diet change, etc.
 - http://www.sheepandgoat.com/ for good info

- Moniezia (tapeworms)
 - Shared by sheep and goats and camelids
 - Adults in small intestine, feed on intestinal contents
 - Eggs passed out in tapeworm segments
 - eaten by free living mite intermediate host
 - Sheep infected by ingesting infected mite

- Moniezia (tapeworms) cont'd
 - Common in young animals
 - Adverse effects?
 - Owner disgust
 - Other effects difficult to demonstrate

- Moniezia (tapeworms) cont'd
 - Diagnosis
 - Observation
 - Eggs in manure
 - Number meaningless because eggs not uniformly distributed
 - Treatment
 - Valbazen, Safeguard, double dose

- Meningeal Worm (brain worm)
 - Parelaphostrongylus tenuis--Parasite of the blood vessels of the meninges of white tailed deer

Meningeal Worm cont'd

- brain worm
- Transmitted by snail/slug intermediate host

Parelaphostrongylus tenuis life cycle

Univ. of Penn.

Meningeal Worm cont'd

- Parasite in deer does not cause disease
- Infection in sheep, goats, camelids MAY cause clinical signs
 - Parasite goes into spinal cord, elicits more inflammation in abnormal hosts

Meningeal Worm cont'd

- Infection in sheep, goats, camelids MAY cause clinical signs
- Range of signs, may progress
 - Knuckling over
 - Lameness
 - Abnormal gait
 - Rear limb paralysis
 - Rear and fore limb paralysis

Other Common/Important Parasites Meningeal Worm cont'd

- Diagnosis
 - No antemortem test currently available
 - Postmortem find suggestive lesions or worm sections
 - Diagnosis on the basis of clinical signs and history
- Treatment
 - Dewormers and anti-inflammatory drugs
 - Ivermectin and fenbendazole (Safeguard) used most often
 - Many recover, some don't

Meningeal Worm cont'd

Management

- 4-8 wk treatments with ivermectin or related drug-can work to increase resistance in GI nematodes
- Reduce deer/snail/slug activity on pastures
 - Fences, birds
 - Fencing off, draining swampy spots

- GI nematodes biggest health problem east of the Rockies
- Most important--barber pole worm, Haemonchus contortus
 - Abomasal (stomach) parasite
 - Exploits many environments, management practices
 - Typically warm weather worm but survives everywhere with adequate moisture
 - In summer predominant even in Vermont

- Haemonchus contortus
 - Blood sucking parasite
 - Large numbers can cause anemia and bottle jaw, weakness
 - Not diarrhea usually
 - Subclinical losses possible
 - Decreased gains, growth

Haemonchus-heavy infection

Nematodes

- Most important is barber pole worm, Haemonchus contortus
- Related parasites also contribute to problems and can cause diarrhea
 - Brown stomach worm (Ostertagia, Teladorsagia)
 - Trichostrongylus
 - Others-- less important

GIN Life Cycle

L3→ L5 17-21 days

Life as a Worm

- How long can the infective larvae last on pasture
- They can't eat once they reach the infective stage
- Once metabolic reserves used up, they die
- Hotter it is, the faster they wiggle, the quicker they die
- Cool, moist conditions they live for months
- Don't typically survive well in housing
- Freezing kills some species
 - Includes Haemonchus

Eggs hatch, and larvae develop to infective 3rd stage in soil and manure.

Life as a Worm

- How do worms survive the winter?
 - On pasture as eggs, larvae
 - Only some species can make it through the winter on pasture
 - As larvae in the host in a dormant state (arrested or hypobiotic)
 - No disease, no eggs in feces

Eggs hatch, and larvae develop to infective 3rd stage in soil and manure.

Getting Rid of Parasites

- If your animals are on pasture they will have worms
- Goal is to manage the worms

- What contributes to their success and increases losses?
 - Climate/weather
 - Management
 - Immunity of the host
 - Drug resistance

- Climate/Weather
 - Warm, wet grazing seasons perfect for Haemonchus
 - Short life cycle
 - About 3 weeks from infection to egg laying
 - Milder, shorter winters extend transmission season
 - Vermont worm season July-August
 - Virginia worm season June-October
 - Florida worm season all year

- Is barber pole worm important in the Northeast?
 - Past wisdom--other worms more important
 - Vet, producer experience say yes
 - Most numerous eggs found in project samples
 - Has importance increased?
 - Resistant worms?
 - Changing grazing season?

Management

- Most parasites part of an animal's natural world
- Usually become a primary problem because of our management practices
 - Bigh density grazing on permanent pastures

TRENDS in Ecology & Evolution

GI Worm Control in Sustainable Systems

- Goal is not to eradicate the worms
- Goal is to keep worms at a level that doesn't have detrimental health effects

Parasite Control in Sustainable Systems

- Parasite losses are a management disease
- We have ways of controlling parasites
- Each producer has to decide which control methods work best for him/her
- Must have integrated parasite control program

- Change reproductive cycle
- Limited or no pasture exposure
 Great for coccidia!
- Especially important to limit exposure for vulnerable animals

- Vulnerable animals
 - Lactating does/ewes
 - Growing lambs/kids
 - Stressed animals
 - Genetically susceptible animals
- The safest pasture is reserved for the most vulnerable animals
 - Safe pasture=pasture with low numbers of larvae

- Reducing parasite numbers on pasture
 - Reduce stocking density
 - After grazing pasture, harvest regrowth for hay
 - Diversification is good for parasite control!
 - Alternate or mixed grazing
 - Sheep/goats ≠ cattle ≠ horses for GI worms
 - Each host is a vacuum cleaner for the parasite larvae of other hosts
 - Few exceptions, usually not practically important
 - Can also use immune animals to remove worms to a lesser degree
 - Dry ewes on a lamb pasture

Pasture rotation

- May be or may not be helpful in parasite control, depending on your situation
 - Rotation may put animals back right as parasite larvae become infective
 - Option for organic production
 - Try combining methods--alternate sheep and cattle in rotation for example

Forages

- Most parasite larvae will probably not migrate up more than ~4-6 "
 - Goats prefer browsing to grazing
- Some high tannin forages seem to have limiting effects on parasites
 - See <u>www.acsrpc.org</u> for info on sericea lespedeza

- See <u>http://web.uri.edu/sheepngoat/</u> for info on birdsfoot trefoil
- Evidence of activity against worms in other plants, ex. chicory

- Sheep and goats develop immunity to GI worms
 - Controls parasites, doesn't eliminate them
 - Immune animals will have eggs in manure
 - Immunity in place at maturity
 - Goats more susceptible than sheep

- Which animals have the most worm problems?
 - Animals with <u>temporary</u> high susceptibility to parasites
 - Young--before immunity develops
 - Lactation
 - Sheep at time of lambing especially susceptible
 - Poor health or nutrition
 - Animals with INHERITED high susceptibility to parasites

- All animals develop immunity, but some do a better job than others
- Much of an individual animal's susceptibility is inherited
- All other things equal, ~30% of the animals have 80% of the worms

- Selective breeding!
 - Cull highly susceptible animals (FAMACHA good for this)
 - Select more parasite resistant breeding stock
 - Ask breeders if they have info
 - Use fecal egg counts to assess
 - You can make any group of any breed more parasite resistant with selective breeding

- Breeds with higher levels of resistance to parasites
 - St. Croix
 - Katahdin
 - Gulf Coast/Florida Native
- Have to keep selecting for parasite resistance even in more resistant breeds
- Less research on variation in resistance in goat breeds

Provided by Katahdin Hair Sheep Internationa

- How can you use immunity?
 - Selective deworming programs
 - Concentrates dewormer use on animals that need it the most
 - Use less dewormer
 - Slow development of resistance to dewormers
 - Can use FAMACHA[©] coupled fecal egg counts to identify susceptible individuals

- Development and maintenance of immune response requires good diet
 - Consider increasing protein levels in young, lactating animals
 - Immune response develops faster
 - Also need adequate vitamins, minerals, energy

Example

- What contributes to their success and increases losses?
 - Climate/weather
 - Management
 - Immunity of the host
 - Drug resistance
 - Increasing problem
 - Makes integrated parasite control that much more important

