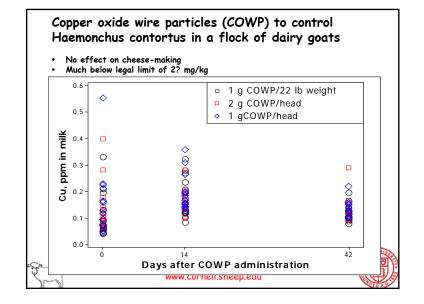

Haemonchus d	wire particles (COWP) to contro contortus in a flock of dairy goa Betsy Hodge, Natasha Pettifor, Chris Posl	ts
Cornell UniversitNESARE	ity Experiment Station (Hatch) funds ity Cooperative Extension (Smith-Lever) fu York Agricultural Development Program	nds
	gn (15 does/COWP level) kg live weight (farmer's dose)	
Sampling: Days 0,	, 14, 28, 42	
-3	www.cornell.sheep.edu	

Copper oxide wire pa Haemonchus contortu	s in a	flock of do	iry god	ats	
Table 1. Effect of copper oxide v counts in lactating does ¹ .	vire partic	cles (COWP) and	date on f	ecal egg	
	St	rongyles	Hae	Haemonchus	
Item	Log _e	Antilog, eggs/g feces	Log _e	Antilog, eggs/g feces	
COWP					
1 g/10 kg BW	7.22	1372	7.18	1310	
1 g/doe	7.26	1418	7.17	1305	
2 g/doe	7.05	1149	6.91	1005	
SE	0.200		0.205		
P-value	0.717		0.580		
Date					
27 May 2013	7.32	1504	7.27	1437	
10 June 2013	6.92	1009	6.85	945	
24 June 2013	7.00	1099	6.91	1000	
8 July 2013	7.47	1751	7.32	1518	
SE	0.136		0.166	1	
P-value	0.013		0.092	, i	
¹ The COWP × Date interactions w	ere not si	gnificant.			
J-J				ALL AND	

Copper oxide wire particles (COWP) to control Haemonchus contortus in a flock of dairy goats


Table 2. Effect of copper oxide wire particles (COWP) on the change in fecal egg counts after 14 days in lactating does.

COWP	Strongyles	Haemonchus
1 g/10 kg BW	-1185	-1153
1 g/doe	75	107
2 g/doe	-1191	-1226
SE	477.9	484.6
P-value for 1 g/head vs average of 1 g/10 kg and 2 g/head	0.036	0.034
P-value for 1 g/10 kg vs 2 g/head	0.993	0.914
	www.cornell.sheep.edu	

Copper oxide wire particles COWP to control Haemonchus contortus in grazing lambs (tatiana Stanton, Betsy Hodge, Natasha Pettifor, Chris Posbergh, Michael Thonney) Funded by • Cornell University Experiment Station (Hatch) funds • Cornell University Cooperative Extension (Smith-Lever) funds • NESARE • Northern New York Agricultural Development Program Experimental design (15 lambs per COWP level) • 0 g COWP • 1 g COWP • 2 g COWP Sampling: Days 0, 14, 28

www.cornell.sheep.edu

Copper oxide wire particles COWP to control Haemonchus contortus in grazing lambs

St. Lawrence County Extension Learning Farm

Table 1. Effect of copper oxide wire particles (COWP) and days on fecal egg counts for the St. Lawrence County Extension Learning Farm,

		Stron	gyles	Haemonchus	
COWP, q	Days	Log	Antilog, eggs/g feces	Log	Antilog, eggs/g feces
0 (control)	0	5.22	185	5.14	171
	14	7.39	1620	7.37	1588
	28	7.56	1920	7.38	1604
0.5 0 14	0	4.20	67	4.13	62
	14	2.66	14	2.02	8
	28	6.12	455	5.93	376
1	0	5.46	235	5.29	198
	14	3.07	22	2,63	14
	28	6.19	488	5.68	293
SE		0.728		0.736	
P-value		0.026		0.010	

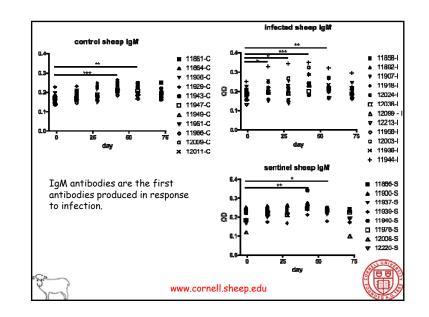
www.cornell.sheep.edu

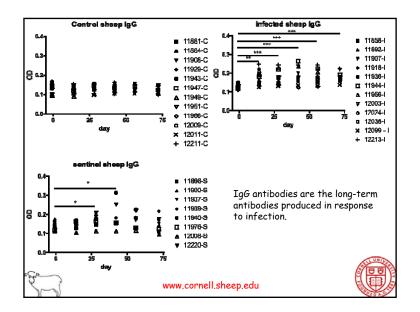
Strongyles		Haemonchus		
Log	Antilog, g _e eggs/g feces Log _e		Antilog, eggs/g feces	
20	<u> </u>	20		
5.45	233	4.85	128	
5.69	296	4.53	93	
5.74	311	4.90	134	
0.713		0.808		
0.626		0.818		
0.925		0.585		
6.10	446	5.30	200	
5.54	255	4.80	122	
5.23	187	4.18	65	
0.244		0.291		
0.013		0.008		
0.675		0.863		
was not si	gnificant.			
			ALL UN	
	Log _e 5.45 5.69 5.74 0.713 0.626 0.925 6.10 5.54 5.54 5.23 0.244 0.013 0.675	Antilog, eggs/g feces 5.45 233 5.69 296 5.74 311 0.713 0.626 0.925 6.10 446 5.54 255 5.23 6.10 446 5.54 255 5.23 187 0.244 0.013	Antilog, Log, eggs/g feces Log, Log, 5.45 233 4.85 5.69 296 4.53 5.74 311 4.90 0.713 0.808 0.626 0.925 0.585 6.10 446 5.30 5.54 255 4.80 5.23 187 4.18 0.244 0.291 0.008 0.675 0.863	

	Str	rongyles	Haemonchus		
	Antilog, eggs/g		Antilog,		
Item	Loge	feces	Loge	eggs/g feces	
COWP, g	20		20	22 2	
0 (control)	6.94	1033	6.89	982	
0.5	5.76	317	5.56	260	
1	6.26	523	6.10	446	
SE	0.614		0.654		
P-value for control vs COWP	0.010		0.006		
P-value for 0.5 vs 1 g	0.212		0.210		
Days after COWP					
0		488	6.02	412	
14		503	6.07	433	
28		699	6.47	645	
	0.243		0.255		
P-value linear contrast			0.227		
P-value quadratic contrast			0.581		
The COWP × Date interactions w	ere not sig	gniticant.			
				_	

Establish P. tenuis infections in a Cornell group of naïve ewes followed by challenges to test for resistance using available L3 larvae and by generating new L3 larvae (Michael Thonney, Lucille Gagliardo, Katherine Churchill, Judy Appleton, Natasha Pettifor)

Design


- 12 "Control" ewes (200 L3 on 21 October 2014) [1 died in January 2014]
 12 Infected (20 L3 on 22 October 2013, 200 L3 on 21 October 2014)
- 7 Sentinal ewes


• Never on pasture


- Blood samples on 22 October 2013 and every 2 weeks to late March 2014
- Blood samples on 21 October 2014 and every 2 weeks to late March 2015
- Any ewe with symptoms is aggressively treated

