Effective Natural Ventilation for New, Smaller Freestall Barns
By Curt A. Gooch

What is the function of a dairy housing barn? The answer is simple: to provide sun protection in the summer, and wind and moisture protection in the winter. Modern, naturally ventilated dairy housing barns should be thought of as shelters. Shelters provide relief from the elements, but not total environmental control. They are constantly ventilated by the nature of their design.

This article is written for smaller dairy operators who thinking about constructing a new freestall barn. In theory, natural ventilation should be easy to achieve. But in practice, it can be difficult to achieve sufficient ventilation to provide a suitable environment.

Basics of Ventilation
Whether using a mechanical or natural ventilation system, the goal is to provide fresh air uniformly throughout the dairy shelter so all animals receive adequate quantities of high quality air. Proper ventilation means moving outside air through designated air inlets and evenly distributing it throughout the shelter. Incoming air mixes with air contaminants (moisture, dust, pathogens, manure gases, and heat) in the shelter and is discharged, as shown in Figure 1. Fans hanging over stalls or alleys do not provide air exchange and are not a substitute for open sidewalls and endwalls.

Figure 1. Basic principle of ventilation: fresh air mixes with shelter air contaminants and is discharged.

To naturally ventilate a shelter, only a few things are needed: wind generated by Mother Nature, knowledge of a few simple engineering principles, and a little common sense. That's all there is to it! Design efforts are focused on maximizing the cost-free energy provided by natural air movement (wind) to provide air exchange. Let’s look at the important principles that need to be considered when designing a natural ventilation system.
Shelter location and orientation

A successful natural ventilation system depends on the shelter’s location and orientation. Animal housing shelters should be sited so that wind breezes are not blocked by natural or man-made structures. Ideal locations are on the highest ground available as a construction site on the farm.

Other structures, such as silos (both uprights and bunkers), other barns, and natural wind barriers should be located on the leeward (downwind) side of the shelter. If a new shelter must be located downwind from wind barriers, provide a minimum spacing of least 75’ and preferably 100’ or more to allow for proper air exchange.

The ideal orientation of the shelter, in terms of ventilation, is perpendicular to the prevailing summertime winds. With this orientation, air entering the shelter through the curtain sidewall travels the shortest distance possible to exit the shelter through the opposite sidewall. This improves the rate of air exchange in the shelter and consequently enhances the cows’ environment. Since winds change direction, winds striking the sidewall within 45 degrees of the perpendicular will still result in adequate air exchange in most cases.

In many locations in the Northeast the prevailing summertime wind direction is from the west or west-southwest. (This should be confirmed at your location as prevailing wind direction is truly site specific.) However, if your shelter is going to be oriented north-south to take advantage of these prevailing winds, you should avoid placing stalls along the west side of the shelter in order to keep cows out of the afternoon sun. Head to head stall layouts are preferred in this situation with center drive-through feeding shelters. Drive along feeding shelters can be designed with the feed alley, rather than stalls, on the west side of the shelter.

Other factors that affect shelter orientation include future expansion, topography, cow flow, and manure flow. Consideration should be made for all of these factors when siting and orientating a new shelter.

Sidewall Openings

Sidewalls of naturally ventilated shelters are the air inlet or the air outlet depending on the wind direction (See Figure 2.). For proper ventilation to take place, the sidewalls of the shelter must be open; fully open in the summer, moderately open in the late fall and early spring, and yes, even somewhat open in the dead of winter.

Sidewall heights should be a minimum of 12’ for open front 2- and 3-row shelters with 14’ preferred for 3-row shelters. With these sidewall heights, large volumes of air can enter and exit the shelter, even with slight breezes. Also, high sidewalls mean that, during periods of little or no natural air exchange, a large volume of dilution air is available in the shelter. This prolongs the period of time until the “stagnant air” in the shelter becomes “stale air”.

Adjustable curtains are used on shelter sidewalls and endwalls to maximize ventilation openings. Sidewall curtains are usually split in half to form a top curtain and a bottom curtain. In most systems, top curtains drop down to open, and bottom curtains rise up to open.
Producers must be careful not to block the openings provided by high sidewalls with excessive curtain hardware or support materials. For example, using 1” by 2” welded wire mesh as curtain support is better than using expanded plastic safety netting, which has an increased surface area. Curtain storage is also important. Curtains that roll to open and close are preferred over those that bundle as they take up much less space when opened, and also they do not provide as much habitat for rodents.

Eave Openings
Eaves are designed to act as the primary air inlet during cold periods with strong blowing conditions and to provide protection from the sun and elements in warm weather. Eave air inlets are openings that cannot be closed down—they are always open. For 2- and 3-row shelters, the effective eave opening should be a minimum of 1” per every 10’ of building width.

Usually, the distance between the top of the sidewall truss support header and the bottom of the roofing material is sufficient space to provide minimum ventilation. For cases where the soffit is totally enclosed, minimum ventilation can be obtained by making the effective height of the curtain correspondingly less than needed to totally close the sidewall.
Figure 2. Curtain sidewall for a naturally ventilated shelter. Sidewall height, H, should be a minimum of 12’ for 2- and 3-row open front shelters with 14’ preferred for 3-row units.

Ridge Openings
Ridge openings are helpful in naturally ventilated freestall shelters as they allow warm, rising, contaminated air to escape through the peak. A ridge opening should be a minimum of two times the minimum opening of the eave -- 2" of clear opening for every 10’ of building width or 12”, whichever is greater as shown in Figure 3.

Some producers are skeptical about providing such an opening, as they are concerned with precipitation entering the shelter and wetting the stall beds. Two methods are available to handle this problem for 2- and 3-row shelters. A gutter system can be installed below the over shot ridge. If this is desired, be sure to specify this to the building’s designer before the trusses are designed. Gutter systems cannot be utilized with trusses that have a king post (vertical member immediately below the ridge opening).

Secondly, a curtain can be installed that can be used to close the opening during adverse conditions. This is most adaptable with an overshot ridge vent as shown in Figure 3. With either method, structural members exposed at the peak of the building should be flashed or otherwise protected from precipitation.

Figure 3. Overshot ridge at a shelter’s roof peak to enhance airflow and minimize moisture intrusion. The suggested minimum clear opening is 12” or 2” per 10’ of building width, which ever is greater.

Roof Slope
Roof slope affects the rate that hot contaminated air generated by the cows rises vertically in the shelter and discharges through the peak. All shelters with a gable design are best ventilated with a roof slope of 4/12. A pitch of 3/12 is suggested for monoslope roofs.

Endwall Openings
Endwalls on freestall shelters should be opened as much as possible. This provides another means of allowing fresh air to enter the shelter and for stale air to exit. Opening the endwalls on days when the wind is blowing parallel to the ridge is especially effective with shelters that are short in length. Open endwalls can be achieved through various methods that can be used separately or in combination. These include: a curtain system in the gable; a curtain system in the endwall; roll-up doors; removable panels; and/or fabric mesh in lieu of metal siding.

Ventilation Management Guidelines
The following guidelines can be used to monitor air quality in naturally ventilated, cold shelters (those with minimal or no insulation).

- In the winter, the inside air temperature should not be more than 5 to 8°F above that of the outside.
- In the spring, summer, and fall, shelter air dry-bulb temperature should be equal to the outside dry-bulb temperature (if no evaporative cooling is employed in the shelter).
- If your shelter smells like your grandfather's old barn, then additional ventilation is needed!

In some cases the building site will preclude a new dairy shelter from being effectively naturally ventilated. Such a barn is a good candidate for mechanical ventilation. Information on mechanical ventilation and other dairy facility and waste management topics can be found by visiting the PRO-DAIRY facilities web site at www.prodairyfacilities.cornell.edu or by contacting me, Curt Gooch, at 607-255-2088 or cag26@cornell.edu. For more information on a variety of small farm topics, visit www.smallfarms.cornell.edu.

Curt Gooch is a Senior Extension Associate in Biological and Environmental Engineering at Cornell University, and works with the PRO-DAIRY Program. This article first appeared in the Summer 2004 edition of Small Farm Quarterly.